氧化物纳米管论文-翟秀云,陈明通,陆文聪

氧化物纳米管论文-翟秀云,陈明通,陆文聪

导读:本文包含了氧化物纳米管论文开题报告文献综述及选题提纲参考文献,主要关键词:构效关系,机器学习,支持向量回归,毒性预测

氧化物纳米管论文文献综述

翟秀云,陈明通,陆文聪[1](2019)在《基于机器学习的金属氧化物纳米粒子毒性预测(英文)》一文中研究指出因为金属氧化物纳米粒子(MNPs)的应用越来越广泛,对于未经检测的MNPs在其实际应用于纳米工业之前,能够对其毒性进行快速、有效地预测是非常重要的。在本工作中,利用收集的文献数据建立了金属氧化物纳米粒子的毒性数据集,其目标变量为MNPs的毒性(log(1/EC_(50))),候选的自变量有11个。使用遗传—支持向量回归(GA-SVR)组合算法对自变量进行筛选,得到了包含叁个变量的用于建模的最优特征集。利用最优特征集形成的新数据集建立了两个用于预测MNPs毒性的定量构效关系(QSAR)模型,即线性核函数支持向量回归(SVR-LKF)和高斯核函数支持向量回归(SVR-RBF)模型。比较两个模型的评价指标发现SVR-RBF模型的性能优于SVR-LKF模型,并且它也优于文献报道的模型。此外,在毒性预测方面SVR-LKF模型也具有较好的预测性能和实用价值。为了探究毒性机理,本文还利用模拟研究分析了各变量对MNPs毒性的影响。因此,本文所提出的方法可以为在机器学习的辅助下MNPs的毒性预测以及毒性机理的研究提供有价值的线索。(本文来源于《计算机与应用化学》期刊2019年04期)

石文,高彤彤,张历云,马彦爽,刘忠文[2](2019)在《铁氧化物纳米棒负载金纳米颗粒催化剂载体表面结构调控对CO氧化的影响(英文)》一文中研究指出自1987年Haruta等首次发现氧化物负载金催化剂具有优异的低温催化CO氧化活性以来,纳米金催化剂由于其独特的物理化学性质引起了催化科学工作者的极大兴趣.大量研究致力于揭示金纳米颗粒的尺寸、价态、制备方法以及活化过程对其低温催化CO氧化的性能影响机制.在众多的负载型金催化剂体系中,可还原性金属氧化物负载Au纳米粒子催化剂由于能产生较强的金属-载体相互作用(SMSI)或做为助催化剂组分提供氧活化位点而受到广泛研究.其中,铁氧化物负载金被认为是最具有潜力的低温催化CO氧化反应催化剂之一;研究表明,其催化性能不仅取决于金纳米粒子的尺寸,而且在很大程度上取决于氧化铁载体的表面性质.尽管氧化铁负载的金催化剂具有非常高的活性,并很好地从传统的动力学角度解释了其反应机理,但氧化铁的表面性质对负载金属-载体间的界面相互作用及反应性能的影响机制仍存在争议,尤其是针对氧化铁表面性质对负载金纳米粒子分散性和稳定性影响的研究仍相对较少,并且缺少直观的研究手段.基于此,本文将预先制备的β-Fe OOH前驱体在不同温度氩气气氛中焙烧处理,制备具有不同表面性质的铁氧化物纳米棒,然后负载Au纳米粒子,并应用于CO氧化反应.进一步利用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等表征手段对Au纳米粒子与氧化铁载体间的相互作用进行了细致表征,揭示了不同氧化铁表面性质对负载金纳米粒子的分散性、化学态的影响以及在一氧化碳氧化反应中的活性和稳定性的差异原因.TEM结果表明,焙烧前不同氧化铁载体上的Au纳米粒子均高度分散,且颗粒尺寸相近,平均粒径约为1.0 nm;焙烧后不同载体上的Au纳米粒子尺寸均有不同程度的长大.粒径统计结果显示,Fe OOH载体表面Au纳米粒子的平均粒径尺寸约为2.5 nm,且以面心立方结构的单晶形式存在;而Fe O_x和α-Fe_2O_3载体表面的Au纳米粒子的平均粒径尺寸则分别为3.9和3.5nm,且存在大量多重孪晶结构.结合XPS和性能测试结果发现,焙烧前Au/Fe OOH催化剂表面的羟基有助于带正电的Au吸附和解离氧气,从而具有低温CO氧化反应活性,但长时间的稳定性测试表明,反应条件下Fe OOH表面羟基不稳定,会逐渐脱除,从而导致催化活性下降.将催化剂预先在200 ~oC空气中焙烧,不同氧化铁载体上金的化学状态会由金属阳离子部分转变为零价金,同时伴随着载体表面羟基的消失.其中,Fe OOH表面含有高于其它铁氧化物的Au~0,且Au/Fe OOH催化剂表现出对CO最优的反应性能和较好的稳定性,说明焙烧处理后催化剂的反应性能与小尺寸的零价金物种密切相关.此外,我们还将相同位置-电子显微学方法(IL-TEM)应用于气相反应体系中,探索了金/铁氧化物系列催化剂的结构演变.结果表明,相比于Au/Fe OOH和Au/α-Fe_2O_3,Fe O_x载体表面独特的孔结构使负载于其上的Au纳米粒子在反应条件下会发生明显的类奥斯特瓦尔德熟化行为,并通过改变反应气中CO和O_2的计量比推测该过程可能是由于Au与CO组分相互作用导致,从而揭示了长时间反应条件下其催化CO氧化活性下降的原因.本文通过结合传统的表征手段和气相IL-TEM方法,对金/铁氧化物催化剂的金属-载体相互作用进行了直观研究,并为新型催化剂的开发和设计提供了参考.(本文来源于《Chinese Journal of Catalysis》期刊2019年12期)

汪星宇,王辉,陈乾旺[3](2019)在《磁场下铁基氧化物纳米材料的生物医学应用》一文中研究指出在过去的几年中,磁性纳米材料的快速发展对生物医学变革产生了巨大的影响。作为磁性纳米材料家族重要的一大分类,纳米级铁基氧化物由于其良好的生物相容性、表面易功能化、独特的磁学性质等特点,在生物医学相关领域展现出巨大的应用前景。本综述围绕磁场下铁基氧化物纳米材料的生物医学应用,介绍了近年来其在磁分离、磁性药物靶向(magnetic drug targeting, MDT)、磁共振成像(magnetic resonance imaging, MRI)、磁性粒子成像(magnetic particle imaging, MPI)、磁响应药物释放、磁流体热疗(magnetic fluid hyperthermia, MFH)等领域的研究进展,并对铁基氧化物纳米材料在生物医学领域未来的发展方向进行了展望。(本文来源于《生命的化学》期刊2019年05期)

新型[4](2019)在《长春应化所:基于二氧化铈的非贵金属混合氧化物纳米催化剂的合成与应用获新进展》一文中研究指出二氧化铈(CeO_2)是催化系统中应用非常广泛的一种组分,其中贵金属负载的CeO_2基催化剂研究非常广泛,然而,这类催化材料存在起燃温度高、催化剂中毒、活性下降、重金属污染等缺点,因此,大量的研究工作致力于开发新的先进材料以期获得更好的性能。非贵金属CeO_2基混合氧化物作为潜在的替代材料,能够有效地提高氧气储存/释放能力,克服在高温下失去稳定(本文来源于《化工新型材料》期刊2019年09期)

王婉秋,岳红彦,俞泽民,高鑫,王宝[5](2019)在《钒氧化物纳米片(球)阵列的制备方法及其在离子电池中的应用进展》一文中研究指出钒氧化物纳米片(球)阵列具有独特的叁维结构,这种结构结合了基底和氧化钒纳米片的优点,提高了电极材料的稳定性。钒氧化物纳米阵列克服了氧化钒比容量较低、循环性和倍率性能不佳等缺陷,增强了基底材料的电子运输能力、电解质的可及性以及电容性能,在锂离子、钠离子电池中有着广泛的应用。介绍了钒氧化物纳米阵列的主要制备方法及其在锂离子、钠离子电池中的应用情况。(本文来源于《化工新型材料》期刊2019年09期)

李玲,姚生莲,赵晓丽,杨佳佳,王野熹[6](2019)在《阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究》一文中研究指出利用电化学阳极氧化技术,在含有丙叁醇、0.35 mol/L NH4F和5%H2O (体积分数)的溶液中,在Zr-17Nb合金表面制备了高度有序的氧化物纳米管阵列。使用XRD、SEM、HRTEM、EDS和XPS对纳米管阵列的结构、形貌和成分进行了详细研究。结果表明,在恒定外加电压70 V的条件下,阳极氧化过程中Zr和Nb的氧化溶解速率保持一致。450℃退火处理后,纳米管膜层由无定型态转化为晶态,由正交相ZrO2和正交相锆铌氧化物(Nb2Zr6O17)组成。退火处理后,纳米管膜层弹性模量降低,硬度提高。同时,纳米管阵列表面水接触角减小,呈现更好的亲水性。(本文来源于《金属学报》期刊2019年08期)

路绍琰,张文燕,武海虹,柴澍靖,骆碧君[7](2019)在《氧化物纳米管制备工艺研究与性能比较》一文中研究指出综述了国内外几种典型氧化物纳米管的制备方法,研究比较了不同制备方法的优缺点,评估了不同工艺的差别及对产品质量的影响,最终建议水热法作为优选的制备工艺,以促进国内氧化物纳米管的工业化生产。(本文来源于《应用化工》期刊2019年08期)

徐航,王昕璐[8](2019)在《铁铜复合氧化物纳米管的制备及电化学性能研究》一文中研究指出采用同轴静电纺丝法和煅烧法,分别制备出Fe_2O_3、CuO、和复合氧化物CuFe_2O_4一维纳米管。通过XRD、SEM、EDS等手段对它们进行了结构表征,以及利用充放电曲线、循环伏安曲线、交流阻抗谱图、循环性能曲线等谱图对电化学性能进行了充分的研究。结果表明,这种方法制备的铁铜氧化物纳米管具有结晶性好、形貌均匀、纯度很高、结构稳定等优点。相比于Fe_2O_3、CuO纳米管,复合氧化物CuFe_2O_4纳米管具有更大的比容量、更稳定的储锂性能和循环性能,也具有更低的电荷传质电阻和更好的循环稳定性能。(本文来源于《长春理工大学学报(自然科学版)》期刊2019年03期)

于学茹,王巨媛,王翠苹,田晓飞,孙树臣[9](2019)在《稀土氧化物纳米颗粒对植物的毒性效应及影响因素研究进展》一文中研究指出稀土氧化物纳米颗粒(Rare Earth Oxide Nanoparticles,REO NPs)具有纳米毒性和金属毒性的双重效应,其毒性效应、生态环境风险引起国内外学者的广泛关注。随着纳米技术的快速发展,纳米颗粒必然通过各种途径进入环境,给生态环境与人类健康造成危害。因此,研究REO NPs在环境介质中的迁移转化及其对植物的毒性效应机制,对REO NPs合理应用及其生态安全评价具有重要的理论价值和实践指导意义。本文通过查阅文献资料,总结了在水培、土培条件下REO NPs对蔬菜和农作物毒性效应、毒性机理及其影响因素,并在此基础上就REO NPs毒性效应和机理研究进行了展望。REO NPs毒性效应主要表现为:(1)抑制根系生长发育;(2)抑制叶绿素合成进而影响光合效率和生物量。毒性机理主要包括:(1)REO NPs溶出离子直接致毒或与矿质营养离子发生竞争,抑制营养吸收;(2)REO NPs破坏细胞选择透性、产生活性氧自由基、使细胞膜发生脂质过氧化而丧失功能;(3)REO NPs附着于组织表面,阻碍水分、营养物质运输和离子交换。影响REO NPs毒性的因子主要包括REO NPs特性(如溶解性、带电性、粒径大小及形状)、植物本身敏感性或耐受性、环境条件(如酸碱性、带电性等)。REO NPs的毒性效应研究存在选择的污染物类型较少,主要针对幼苗期的植物,少有分子生物学、土培方式、全环境条件研究等问题,后期可从上述方面进行深入研究。(本文来源于《福建农业学报》期刊2019年06期)

赵全清,郭泽峰,吴宇,王利芹,韩占立[10](2019)在《多级花状尖晶石锰基氧化物纳米片用于高性能锂离子电池(英文)》一文中研究指出应.这种独特的结构不仅可以暴露更多的活性位点、缩短离子/电子扩散路径,还可以确保良好的结构稳定性,抑制重复循环过程中的结构应变.本文通过模板导向策略合成多级花状纯相尖晶石锰基氧化物纳米片.通过醇辅助水热法,利用"气泡反应"原理获得的碳酸盐分解来制备取向模板.最终产物尖晶石锰基氧化物纳米片同时满足优异的倍率性能和循环稳定性要求.合成的分层花状高压LiNi_(0.5)Mn_(1.5)O_4(LNMO-HF)元素分布均匀,且无杂相. LNMOHF可以提供142.6 mA h g~(-1)的高放电容量,在55℃、1C下,其比能量密度为660.7 W h kg~(-1).此外,利用这种模板导向策略合成的LiMn_2O_4(LMO),在1000次循环后,其容量保持率可达88.12%.(本文来源于《Science China Materials》期刊2019年10期)

氧化物纳米管论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

自1987年Haruta等首次发现氧化物负载金催化剂具有优异的低温催化CO氧化活性以来,纳米金催化剂由于其独特的物理化学性质引起了催化科学工作者的极大兴趣.大量研究致力于揭示金纳米颗粒的尺寸、价态、制备方法以及活化过程对其低温催化CO氧化的性能影响机制.在众多的负载型金催化剂体系中,可还原性金属氧化物负载Au纳米粒子催化剂由于能产生较强的金属-载体相互作用(SMSI)或做为助催化剂组分提供氧活化位点而受到广泛研究.其中,铁氧化物负载金被认为是最具有潜力的低温催化CO氧化反应催化剂之一;研究表明,其催化性能不仅取决于金纳米粒子的尺寸,而且在很大程度上取决于氧化铁载体的表面性质.尽管氧化铁负载的金催化剂具有非常高的活性,并很好地从传统的动力学角度解释了其反应机理,但氧化铁的表面性质对负载金属-载体间的界面相互作用及反应性能的影响机制仍存在争议,尤其是针对氧化铁表面性质对负载金纳米粒子分散性和稳定性影响的研究仍相对较少,并且缺少直观的研究手段.基于此,本文将预先制备的β-Fe OOH前驱体在不同温度氩气气氛中焙烧处理,制备具有不同表面性质的铁氧化物纳米棒,然后负载Au纳米粒子,并应用于CO氧化反应.进一步利用X射线衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等表征手段对Au纳米粒子与氧化铁载体间的相互作用进行了细致表征,揭示了不同氧化铁表面性质对负载金纳米粒子的分散性、化学态的影响以及在一氧化碳氧化反应中的活性和稳定性的差异原因.TEM结果表明,焙烧前不同氧化铁载体上的Au纳米粒子均高度分散,且颗粒尺寸相近,平均粒径约为1.0 nm;焙烧后不同载体上的Au纳米粒子尺寸均有不同程度的长大.粒径统计结果显示,Fe OOH载体表面Au纳米粒子的平均粒径尺寸约为2.5 nm,且以面心立方结构的单晶形式存在;而Fe O_x和α-Fe_2O_3载体表面的Au纳米粒子的平均粒径尺寸则分别为3.9和3.5nm,且存在大量多重孪晶结构.结合XPS和性能测试结果发现,焙烧前Au/Fe OOH催化剂表面的羟基有助于带正电的Au吸附和解离氧气,从而具有低温CO氧化反应活性,但长时间的稳定性测试表明,反应条件下Fe OOH表面羟基不稳定,会逐渐脱除,从而导致催化活性下降.将催化剂预先在200 ~oC空气中焙烧,不同氧化铁载体上金的化学状态会由金属阳离子部分转变为零价金,同时伴随着载体表面羟基的消失.其中,Fe OOH表面含有高于其它铁氧化物的Au~0,且Au/Fe OOH催化剂表现出对CO最优的反应性能和较好的稳定性,说明焙烧处理后催化剂的反应性能与小尺寸的零价金物种密切相关.此外,我们还将相同位置-电子显微学方法(IL-TEM)应用于气相反应体系中,探索了金/铁氧化物系列催化剂的结构演变.结果表明,相比于Au/Fe OOH和Au/α-Fe_2O_3,Fe O_x载体表面独特的孔结构使负载于其上的Au纳米粒子在反应条件下会发生明显的类奥斯特瓦尔德熟化行为,并通过改变反应气中CO和O_2的计量比推测该过程可能是由于Au与CO组分相互作用导致,从而揭示了长时间反应条件下其催化CO氧化活性下降的原因.本文通过结合传统的表征手段和气相IL-TEM方法,对金/铁氧化物催化剂的金属-载体相互作用进行了直观研究,并为新型催化剂的开发和设计提供了参考.

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

氧化物纳米管论文参考文献

[1].翟秀云,陈明通,陆文聪.基于机器学习的金属氧化物纳米粒子毒性预测(英文)[J].计算机与应用化学.2019

[2].石文,高彤彤,张历云,马彦爽,刘忠文.铁氧化物纳米棒负载金纳米颗粒催化剂载体表面结构调控对CO氧化的影响(英文)[J].ChineseJournalofCatalysis.2019

[3].汪星宇,王辉,陈乾旺.磁场下铁基氧化物纳米材料的生物医学应用[J].生命的化学.2019

[4].新型.长春应化所:基于二氧化铈的非贵金属混合氧化物纳米催化剂的合成与应用获新进展[J].化工新型材料.2019

[5].王婉秋,岳红彦,俞泽民,高鑫,王宝.钒氧化物纳米片(球)阵列的制备方法及其在离子电池中的应用进展[J].化工新型材料.2019

[6].李玲,姚生莲,赵晓丽,杨佳佳,王野熹.阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J].金属学报.2019

[7].路绍琰,张文燕,武海虹,柴澍靖,骆碧君.氧化物纳米管制备工艺研究与性能比较[J].应用化工.2019

[8].徐航,王昕璐.铁铜复合氧化物纳米管的制备及电化学性能研究[J].长春理工大学学报(自然科学版).2019

[9].于学茹,王巨媛,王翠苹,田晓飞,孙树臣.稀土氧化物纳米颗粒对植物的毒性效应及影响因素研究进展[J].福建农业学报.2019

[10].赵全清,郭泽峰,吴宇,王利芹,韩占立.多级花状尖晶石锰基氧化物纳米片用于高性能锂离子电池(英文)[J].ScienceChinaMaterials.2019

标签:;  ;  ;  ;  

氧化物纳米管论文-翟秀云,陈明通,陆文聪
下载Doc文档

猜你喜欢