高产纤维素酶菌株论文-葛青,章亭洲,王腾浩,赵艳

高产纤维素酶菌株论文-葛青,章亭洲,王腾浩,赵艳

导读:本文包含了高产纤维素酶菌株论文开题报告文献综述及选题提纲参考文献,主要关键词:里氏木霉,诱变,纤维素酶,发酵

高产纤维素酶菌株论文文献综述

葛青,章亭洲,王腾浩,赵艳[1](2019)在《高产纤维素酶里氏木霉菌株诱变选育及其发酵条件优化》一文中研究指出试验旨在研究高产纤维素酶里氏木霉诱变选育与发酵条件优化。采用常压室温等离子体(ARTP)诱变法处理里氏木霉,获得产纤维素酶高的突变菌,并对其产酶发酵条件进行优化。通过单因素实验研究发酵时间、硫酸铵浓度、微晶纤维素浓度、接种量及搅拌速度等对里氏木霉产酶的影响。在单因素的基础上,通过正交实验对里氏木霉产酶的工艺参数进行优化。结果表明,在诱变时间240 s条件下筛选到1株突变里氏木霉ATR-4,其滤纸酶活(FPU)最高可达2.01 U·mL~(-1)。对突变里氏木霉菌株ATR-4的发酵条件优化,筛选得到最佳产酶培养条件为:发酵时间78 h,硫酸铵浓度1 g·L~(-1),接种量10%,搅拌速度400 r·min~(-1)。在此条件下进行验证实验,最高酶活可达4.57 U·mL~(-1)。本研究结果表明,常压室温等离子体(ARTP)诱变可有效对里氏木霉进行诱变育种,改善其产酶能力。(本文来源于《饲料博览》期刊2019年06期)

夏呈强[2](2019)在《转录激活因子XlnR及其同系物在草酸青霉中的功能研究与纤维素酶系高产菌株的构建》一文中研究指出丝状真菌由于能够分泌较完整的木质纤维素降解酶系,并且产酶水平比较高,因此广泛应用于工业纤维素酶的生产。构建具有高产酶能力的丝状真菌菌株是降低木质纤维素降解酶生产成本、推动纤维素乙醇等行业发展的重要途径。丝状真菌中木质纤维素降解酶的合成主要受转录因子的组合调控。根据转录因子对木质纤维素降解酶基因的激活或抑制功能,一般将其分为两类:第一类为转录激活因子,主要包括CLR-1、CLR-2/ClrB、XLR-1/Xyr1/XlnR、ACEⅡ、ACEⅢ、AraR/ARA1等;第二类为转录抑制因子,主要包括CRE1/CreA、ACEI、BglR等。目前,在草酸青霉中已经鉴定到的木质纤维素降解酶基因调控转录因子有CreA、ClrB、XlnR和AmyR等。其中,XlnR是调控木聚糖酶基因表达最重要的转录激活因子,并且参与部分纤维素酶基因的表达调控。在多数木质纤维素降解丝状真菌中都可以发现转录激活因子XlnR同系物的存在,该蛋白结构和功能相对比较保守,并且在半纤维素降解和木糖代谢过程中发挥至关重要的作用。在本论文中,我们研究了草酸青霉转录调控因子XlnR的结构域组成特征,并探究了异源XlnR同系物在草酸青霉中的调控特性。对XlnR及其同系物的研究有助于加深对不同物种间XlnR同系物功能保守性的认识,同时也有利于为菌株的理性改造与木质纤维素降解酶高产菌株的构建提供有效靶点。本论文的主要研究结果如下:1.草酸青霉XlnR功能结构域的研究借助于酵母报告基因检测系统,通过构建不同区域的XlnR序列与酵母转录因子Gal4 DNA结合域的融合蛋白,对草酸青霉XlnR的激活结构域进行鉴定,确定了第351-694位氨基酸序列含有激活结构域。将草酸青霉XlnR靠近N端的一段特有的谷氨酰胺(Q)重复序列删除以后,XlnR对纤维素酶与半纤维素酶基因的调控能力增强,说明该段序列在一定程度上抑制了草酸青霉XlnR活性的发挥。发现位于XlnR C末端的序列对于草酸青霉XlnR活性发挥至关重要,其删除会使XlnR丧失调控活性,这与黑曲霉中XlnR C末端删除后的结果不同。通过对XlnR中可能参与解除葡萄糖抑制的氨基酸保守位点(第868-871位氨基酸)进行研究发现,XlnR中第871位氨基酸的极性与XlnR激活功能的发挥有直接关系,且第871位氨基酸的丢失会造成XlnR活性的丧失。当第871位的丙氨酸删除之后,XlnR激活能力丧失;突变为亲水性氨基酸之后,XlnR的激活能力降低;突变为疏水性氨基酸,XlnR激活能力变强,且该位点氨基酸疏水性越强,XlnR激活能力越强。此外,借助于酵母双杂交实验,我们确定了XlnR激活结构域与位于C端的氨基酸序列存在相互作用,说明两者之间可能在草酸青霉中通过改变相互作用的有无来实现XlnR活性的调节。2.异源XlnR同系物在草酸青霉中的功能研究将与草酸青霉XlnR亲缘关系较近的黑曲霉AXlnR、亲缘关系较远的里氏木霉Xyrl以及粗糙脉孢菌XLR-1,分别在草酸青霉xlnR缺失突变株中进行异源表达,发现这叁种异源XlnR同系物均能够激活草酸青霉木质纤维素降解酶系的表达。在包括草酸青霉本源XlnR在内的四种XlnR同系物中,里氏木霉Xyr1对草酸青霉纤维素酶基因调控能力最强,这可能与Xyr1在里氏木霉本源宿主菌中具有较强的纤维素酶基因调控能力有关。粗糙脉孢菌XLR-1对草酸青霉纤维素酶基因调控能力最弱。前人研究表明,XLR-1在粗糙脉孢菌中并不参与纤维素酶基因的调控,但在草酸青霉中,粗糙脉孢菌XLR-1却可以在一定程度上参与纤维素酶调控,提高xlnR缺失株的纤维素酶酶活。总的来说,XlnR同系物在异源宿主菌株中仍旧具有功能的保守性,可以参与到异源宿主菌的木质纤维素降解酶表达调控网络中,并发挥其调控功能。将XlnR同系物的保守氨基酸进行点突变,发现点突变后的Xyr-1A824V、XLR-1A828V、AXlnRA805V对草酸青霉木质纤维素降解酶基因的激活能力较突变前Xyr1、XLR-1、AXlnR分别更强。其中,Xyr1A824V在四种XlnR同系物突变体中的激活能力最强。同时,首次发现黑曲霉保守位点突变A805V也能够提高其对草酸青霉木质纤维素降解酶表达的激活效果。在草酸青霉中,该突变体与草酸青霉XlnRA871V激活效果接近。此前的研究结果证明,在本源宿主菌中突变后的XlnR同系物与突变前相比对木质纤维素降解酶基因具有持续激活能力及增强激活功能,本论文研究发现在异源宿主菌(草酸青霉)中这种持续激活的优势依旧存在。这些异源突变体功能的发现为草酸青霉菌株的遗传改造提供了更多的选择性。3.异源XlnR表达调控模块在草酸青霉中的功能研究以M12作为出发株,在草酸青霉菌株DB2中成功地建立了 Rec/six筛选标记重复利用系统,并且发现该系统对草酸青霉纤维素酶的产生没有影响。将含有里氏木霉转录激活因子Txyr1A824V及其靶标纤维素酶基因Tcbh1-Teg1的表达调控模块在草酸青霉中进行异源表达,发现纤维素酶基因Tcbh1和Teg1能够进行低水平的表达,且Xyr1A824V表达调控模块对草酸青霉纤维素酶酶活的提升效果优于单独Xyr1A824V的表达。由于外源的纤维素酶基因启动子在草酸青霉中不能高效地启动基因的表达,将其更换为草酸青霉本源的启动子,进而使外源纤维素酶基因实现了高效表达。纤维素酶基因启动子优化后的里氏木霉来源和粗糙脉孢菌来源表达调控模块均优于转录因子的单独过表达,显示将转录因子和其靶标基因共表达在菌株遗传改造中具有可行性。4.木质纤维素降解酶高产菌株的构建借助于Rec/six筛选标记重复利用系统,在菌株DB2的基础上累积过表达来自于草酸青霉、里氏木霉和粗糙脉孢菌的XlnR表达调控模块,使菌株的纤维素酶和半纤维素酶酶活均得到大幅提升。其中,构建的高产菌株RE-4-2相比于原始菌株M12滤纸酶活提高了5.1倍,木聚糖酶活提高了28倍。高产菌株RE-4-2所产酶系对预处理后的玉米秸秆的糖化效率也比出发菌株M12提高了 93%,纤维素转化率提高了 1.57倍。为进一步提高菌株对半纤维素的降解能力,在高产菌株RE-4-2的基础上过表达了点突变的AraRA731V,得到菌株RE-4-2-AraRA731V,其阿拉伯呋喃糖苷酶活比RE-4-2提高了 7.2倍,木糖苷酶活也提高了 1.2倍。通过对预处理后玉米秸秆的糖化实验,发现菌株RE-4-2-AraRA731V所产还原糖比菌株RE-4-2提高了13%。(本文来源于《山东大学》期刊2019-05-22)

方桢[3](2019)在《木聚糖酶高产菌株的选育及酶法制备药用微晶纤维素的初步研究》一文中研究指出本论文首先从土壤中筛得黑曲霉FXY,并通过紫外、常压室温等离子体(Atmospheric and room temperature plasma,ARTP)及二者的复合诱变选育得到木聚糖酶高产菌P-UV-17。为进一步提高该菌株所产木聚糖酶的酶活,对其发酵条件及发酵培养基配方进行了优化,并对所产木聚糖酶的酶学性质做了相应研究。最后利用该菌株所产木聚糖酶成功制备药用微晶纤维素(Microcrystalline cellulose,MCC)。具体结论如下:(1)紫外诱变的最佳条件为:菌株培养4 d,紫外照射6 min;ARTP诱变的最佳条件为:菌株培养4 d,ARTP辐照5 min。之后在各自的最佳条件下进行复合诱变,最终通过ARTP-紫外复合诱变技术筛得能稳定遗传的优势菌株P-UV-17,其所产木聚糖酶酶活为202.51 U/mL,较出发菌株FXY提高了154.99%。并通过研究得出结论:优势菌株所产木聚糖酶的酶活之所以提高,不是因为菌株生物量的增加,而是与酶的比活力增加有关。(2)通过单因素实验确定了菌株P-UV-17的最佳发酵条件:发酵时间96 h,发酵温度32℃,培养基初始pH 6.0,接种量4%,装液量50 mL/250mL,摇床转速180 r/min。后通过响应面优化得到发酵培养基最佳配方为:麸皮17.47 g/L、葡萄糖9.78 g/L、酵母粉5.73 g/L、磷酸二氢钾1.00 g/L、硫酸镁0.80 g/L。该菌株所产木聚糖酶的最适温度为45℃、最适pH为7.0,在上述温度和pH中酶的稳定性良好。(3)在SO_3微热爆联合稀碱处理稻草秸秆的基础上,用木聚糖酶处理粗综纤维素不仅能提高样品白度,而且减少了75.00%的NaClO_2的用量。利用酶法制备的MCC符合药典标准,表明酶法制备药用MCC是切实可行的绿色工艺。(本文来源于《合肥工业大学》期刊2019-04-01)

李豪,白光剑,兰楠,徐静,赵兴秀[4](2019)在《高产纤维素酶菌株的筛选、鉴定及产酶特性研究》一文中研究指出为了从腐殖质土壤中筛选得到高产纤维素酶菌株,本试验进行了产纤维素酶菌株的筛选、鉴定及其产酶特性研究。首先用羧甲基纤维素钠(CMA-Na)培养基初步分离产纤维素酶菌株,再经过酶活复筛得到一株高产纤维素酶菌株B17。经过形态学和16S rDNA测序鉴定为枯草芽孢杆菌(Bacillus subtilis),并对其发酵产酶条件和酶学性质进行初步研究。试验结果表明,菌株B17的最佳发酵条件为:培养时间3 d、发酵温度35℃、初始pH为6.0,该条件下测得CMC酶活达85.48 U/mL、FPA酶活达59.85 U/mL。酶学性质研究表明:菌株所产纤维素酶最适反应条件为温度50℃、pH为6.0,且具在30~60℃、pH为4.0~7.0范围均具有较高酶活。以上结果表明,本研究所得菌株B17具有较高的开发价值,可应用于农作物秸秆饲料的生产。(本文来源于《中国畜牧兽医》期刊2019年03期)

孟庆山[5](2019)在《里氏木霉纤维素酶基因转录调控因子鉴定及纤维素酶高产菌株构建》一文中研究指出作为可再生资源,木质纤维素类生物质分布广泛,储量丰富。这类生物质主要组分是纤维素、半纤维素和木质素,其中纤维素的含量最高。利用微生物发酵生产的纤维素酶将纤维素组分降解为葡萄糖作为微生物细胞培养和发酵的基础原料,生产生物燃料和生物基化学品,不仅能减轻对石油等不可再生资源的依赖,而且生物燃料和生物基化学品还具有环境友好的特点,是经济和社会可持续发展的重大需求。然而,纤维素酶生产成本高导致水解糖的成本高,限制了木质纤维素类生物质资源的开发利用。丝状真菌是自然界中降解木质纤维素的主要微生物,其中里氏木霉(Trichodermareesei)最具有代表性,很多纤维素酶高产菌株都来自里氏木霉。目前对里氏木霉产纤维素酶的研究主要集中在两个方面:一方面是从机理上阐明里氏木霉产酶调控机制,为菌株遗传改造育种提供理论支持;另一方面是对里氏木霉酶系组分及性能进行优化,提高酶系各组分水解纤维素的协同效果。T.reesei Rut-C30曾是纤维素酶生产工业菌株,也是研究最广泛的产纤维素酶模式菌株及目前工业菌株选育的出发菌株。本文研究工作从里氏木霉人工锌指蛋白转录因子突变体文库中筛选获得了高产纤维素酶突变株T.reeseiM1和M2;以孢子接种方式进行摇瓶发酵,突变株M1和M2的纤维素酶活较出发菌株分别提高100.8%和53.2%,且M1突变株外泌蛋白量提高69.1%,M2内切纤维素酶活提高64.2%;对突变株中人工锌指蛋白转录因子序列进行分析,发现人工锌指蛋白转录因子基因片段在染色体中整合位点位于Scaffold 1:TrireRUTC30:4597和TrireRUTC30:67627两个基因间隔区,且与上述两基因启动子或终止子距离较远;RT-qPCR分析结果显示,突变株M1和M2中主要纤维素酶基因转录均上调,且纤维素酶主要正调控转录因子基因xyr1在M1突变株中有明显上调,而纤维素酶抑制转录因子基因ace1在两株突变株中都明显下调。上述研究结果表明人工锌指蛋白对T.reesei Rut-C30纤维素酶活性的影响具有多样性。对突变株M2中人工锌指蛋白转录因子预测靶基因的转录分析发现,基因TrireRUTC30:10530(Trctf1)转录水平明显下调,而敲除基因Trctfl导致菌株在纤维素诱导条件下纤维素酶酶活较出发株提高了 43.8%,而使用组成型强启动子pdcl持续高效表达Trctf1后,突变株的纤维素酶生产受到明显抑制,转录组分析进一步发现敲除菌株中纤维素酶转录激活因子Vib1、Xyr1和Ace3的转录均明显上调,而转录抑制因子Rce1转录量则明显下调。推测转录因子Trctf1在T.resei Rut-C30中对纤维素酶合成起负调控作用。这一研究结果表明人工锌指蛋白转录因子技术可用于靶基因功能鉴定。纤维素酶高产菌M2中人工锌指蛋白转录因子由特异DNA结合域和酵母来源的Ga14激活域组成,而T.rresei中纤维素酶合成主要由与酵母Ga14相似的转录激活因子Xyr1调控。基于此,设计了一个新型人工嵌合转录因子AZFP-M2-Xyr1AD并研究其对T.reesei纤维素酶合成的影响。分别将菌株M2中人工锌指蛋白转录因子AZFP-M2-Gal4和嵌合转录因子AZFP-M2-Xyr1 AD定点插入到T.reesei TU-6菌株xyn3基因位点,构建菌株QS1和QS2。摇瓶发酵结果显示:QS1和QS2纤维素酶滤纸酶活分别较出发株提高39.4%和73.7%。转录分析发现QS1和QS2中编码主要纤维素酶和辅助蛋白的基因转录较出发株均明显上调,而编码主要纤维素酶调控因子基因的转录却有显着差异,揭示上述两个人工转录因子参与调控T.reesei纤维素酶合成的分子机制不同。此外,比较出发株TU-6、QS1和QS2菌株发酵获得的粗酶液对碱预处理后玉米秸秆和菊芋秸秆的酶解效果,发现QS2菌株粗酶液水解后葡萄糖释放量比TU-6粗酶液水解分别提高了97.9%和14.0%,比QS1粗酶液处理分别提高90.2%和8.2%。上述实验结果表明,利用T.reesei内源转录因子Xyr1的激活域所构建的人工转录因子AZFP-M2-Xyr1 AD比酵母来源Gal4激活域构建的人工锌指蛋白转录因子AZFP-M2-Gal4更能有效调控T.reesei纤维素酶生产。里氏木霉中纤维素酶系不全导致各酶比例不均衡,严重影响纤维素组分水解过程协同作用效果。之前更多研究偏向于对酶系进行体外复配,但这无疑造成了成本增加。通过基因工程手段对T.reesei纤维素酶系合成进行改造和优化,不仅可以降低产酶成本也可以减少纤维素降解所需酶量。因此,研究工作将主要内切酶基因egl1定点插入到纤维素酶转录抑制因子ace1基因位点,通过基因工程手段对T.reesei酶系进行优化,构建菌株QS305。实验结果表明:QS305在摇瓶发酵中总纤维素酶和内切酶酶活分别较出发株Rut-C30提高90.0%和132.7%;在5-L发酵罐中发酵108 h,QS305菌株纤维素酶产量可达10.7 FPU/mL,较出发株提高75.4%。此外,QS305所产粗酶液较出发株能有效对碱预处理后玉米秸秆和菊芋秸秆进行降解。本研究工作利用人工锌指蛋白技术对.T reesei Rut-C30中未知的纤维素酶调控因子进行挖掘,为深入理解T.reesei菌株纤维素酶调控机制提供了参考,并通过基因工程手段对酶系合成进行了调控,为进一步优化纤维素组分酶解性能奠定了基础。(本文来源于《大连理工大学》期刊2019-01-05)

周新萍[6](2018)在《高产纤维素酶菌株的筛选及产酶条件的研究》一文中研究指出植物纤维是自然界最丰富的资源,筛选高产纤维素酶菌株,降低纤维素酶的生产成本,让植物纤维变废为宝一直是研究热点。从腐烂植物叶片中分离到一株高产纤维酶菌株CXYJ-1。对CXYJ-1菌株进行发酵培养条件的研究,结果表明,以豆饼粉为碳源,(NH_4)_2SO_4为氮源,培养温度为35~37℃,初始pH=5,培养96 h,产酶活力最高,CMC酶活为4.8 U/mL,FP酶活为4.5 IU/mL。(本文来源于《广东化工》期刊2018年24期)

程鹏,刘姗姗,王玉,卢存龙,刘爱民[7](2019)在《1株高产纤维素酶菌株的筛选鉴定及对稻秆降解的研究》一文中研究指出【目的】筛选高效纤维素降解菌,用于稻秆原位还田菌剂的开发。【方法】通过稻秆粉培养基和刚果红-纤维素选择性培养基,从芜湖地区腐殖土中筛选分离出高效纤维素降解菌CX1,测定不同底物条件和不同反应温度下的纤维素酶活性。通过滤纸条崩解试验、土培降解试验、菌株与化学物质协同降解稻秆试验、发酵液对小麦幼苗生长的影响试验,探究菌株CX1腐解稻秆的特性。【结果】通过菌株形态学特征及16S rDNA序列相似性(99%)比对,确定CX1为高温嗜热芽孢杆菌Thermophilic Bacillus sp.。以稻秆粉为底物,50℃条件下菌株CX1纤维素酶活力达13.87 U·mL~(–1),65℃时酶活力仍能达到9.73 U·mL~(–1)。添加菌株CX1培养4 d后滤纸条完全崩解,到15 d时,稻秆纤维素降解率达到52.55%,土培40 d时稻秆相对降解率达到25.38%。预先用质量浓度为0.05 g·mL~(–1)的NaOH溶液浸泡处理的稻秆更利于菌株CX1对稻秆的降解,腐解14 d时稻秆失重率比对照组增加了6.69%。添加经菌株CX1降解稻秆后的发酵液可使小麦的各项生长指标有明显提高,小麦的出苗率、苗高、根鲜质量和苗鲜质量分别提高了9.66%、55.55%、59.71%和118.84%。【结论】菌株CX1对高温具有耐受性,能高效降解纤维素,可在农业生产中促进稻秆原位还田方面发挥积极的作用。(本文来源于《华南农业大学学报》期刊2019年01期)

郑贤金,汤斌[8](2018)在《匍枝根霉纤维素酶高产菌株的诱变选育及发酵优化》一文中研究指出为提高纤维素酶产量,以匍枝根霉TP-02为出发菌株,通过诱变选育纤维素酶高产突变株,并研究碳源、氮源以及氨基酸等物质对菌株产酶能力的影响.经紫外和甲基磺酸乙酯复合诱变后筛选得到一株高产菌株TZ-03,其滤纸酶活(FPA)为4.96IU/mL,较TP-02提高了37.8%.优化后最佳发酵培养基为:微晶纤维素20g/L,鱼粉蛋白胨10g/L,麸皮浸出汁2.5%,CaCl_22g/L,MgSO_4·7H_2O 4g/L,KH_2PO_43g/L,谷氨酰胺1g/L,PEG-4000 0.25g/L,Tween 80 200μL/L,微量元素液1mL/L.此条件下TZ-03的FPA酶活高达11.58IU/mL.通过对发酵过程中溶氧、pH和补料条件的控制,进行10L发酵罐放大实验,最终使该突变株的FPA酶活在84h达到峰值21.32IU/mL,与摇瓶发酵相比提高了89.8%.β-葡萄糖苷酶(BG)、内切酶(EG)和外切酶(CBH)的酶活峰值分别为41.0IU/mL、26.76IU/mL和16.94IU/mL.通过诱变及发酵优化成功提高了纤维素酶产量,为纤维素酶的工业化应用奠定了一定的基础.(本文来源于《安徽工程大学学报》期刊2018年04期)

黄晓梅,赵红晓,范金霞,陈秀玲[9](2018)在《一株高产纤维素酶绿色木霉菌株诱变选育与发酵研究》一文中研究指出文章分别利用紫外线(UV)、硫酸二乙酯(DES)和亚硝酸钠(Na NO2)诱变及UV和DES,UV和Na NO2复合诱变方法处理绿色木霉(Trichoderma viride)菌株,经液体发酵筛选,选择纤维素酶活性较高菌株并分析其液体发酵条件。在UV照射300 s,Na NO2处理10 min条件下获得4株稳定高产纤维素酶菌株,其中M213纤维素酶活比原始菌株提高32.24%;运用正交试验优化M213菌株培养条件,筛选得到最佳产纤维素酶培养条件:23.5 g·L-1麸皮和玉米秸秆,3 g·L-1(NH4)2SO4和豆饼粉,碳氮比8.1,pH 5.5,培养温度28℃,培养时间24 h,接种量10%(V/V)。优化后M213纤维素酶活性可达48.42 U·m L-1,比优化前提升1.21倍。研究选育获得产纤维素酶能力较稳定菌株M213,可为后续大规模培养与应用提供重要依据。(本文来源于《东北农业大学学报》期刊2018年06期)

郑贤金[10](2018)在《匍枝根霉纤维素酶高产菌株的选育及发酵控制》一文中研究指出纤维素酶作为一种重要的工业酶制剂,具有环保、高效地将纤维素转化成人类需要的能源和其他工业原料的功能,因而被广泛应用于畜牧、造纸、食品工业等诸多领域。然而,纤维素酶酶活低、生产成本高是制约其应用的关键因素,本论文通过诱变选育获得一株高产纤维素酶的匍枝根霉TZ-03菌株。并通过对TZ-03培养基组分和培养条件的优化及10 L发酵罐放大实验,成功提高了纤维素酶活,使其在以微晶纤维素为唯一碳源的培养基中84 h的滤纸酶活(FPA)高达21.32 IU/m L。实验过程中发现诱变后β-葡萄糖苷酶活(BG)提高明显,因此对其分子机制和结构功能进行初步研究。主要工作如下:(1)以匍枝根霉TP-02为出发菌株,通过紫外和甲基磺酸乙酯(EMS)诱变及后续筛选获得了单因子诱变高产突变株。并从中选取酶活较高的5株进行复合诱变,最终得到一株高产菌TZ-03,其FPA酶活达到4.96 IU/m L,较TP-02提高了37.8%。(2)以滤纸酶活为指标,从碳源、氮源、氨基酸种类、聚乙二醇系列(PEGs)、培养温度、初始p H这些方面进行培养基组分和培养条件优化。采用正交试验设计实验优化后的培养基组分确定为:微晶纤维素20 g/L,鱼粉蛋白胨10 g/L,麸皮浸出汁2.5%,Ca Cl2 3g/L,Mg SO4·7H2O 4 g/L,KH2PO4 3 g/L,谷氨酰胺1.5 g/L,PEG-4000 0.2 g/L,Tween 80 200μL/L,微量元素液1 m L/L。培养温度为30℃,初始p H为5.0。此条件下,FPA酶活在108 h达到最大值12.75IU/m L,β-葡萄糖苷酶活(BG)达到24.10 IU/m L,内切酶活(EG)达到15.98 IU/m L,外切酶活(CBH)达到9.70 IU/m L。(3)根据摇瓶优化的结果进行10 L发酵罐放大实验。装液量为5 L,初始罐压0.08 MPa,通气量为0.6 vvm,转速为300 rpm,控制发酵过程中的溶氧维持在30%左右,p H维持在4.8,发酵24 h后发酵液中还原糖含量维持在1.2 mg/m L左右。此条件下,滤纸酶活在84 h达到峰值21.32 IU/m L,与摇瓶发酵相比提高了89.8%,时间缩短了近24 h。CBH酶活在72 h达到最大值16.94 IU/m L,BG在84 h达到峰值41.06 IU/m L,EG酶活也在84 h达到最大值26.76 IU/m L。(4)通过TP-02和TZ-03中BG酶活和转录水平的比较,发现诱变后BG酶活提高了1.51倍,转录水平上调了90.19%,其可导致蛋白表达量的提高,从而可能引起BG酶活的提高。进而钓取了β-葡萄糖苷酶基因bgl4,利用DS 3.0软件进行BGL和BGL IV的同源建模,并以纤维二糖为底物进行分子对接。结果表明,BGL和BGL IV具有典型的(α/β)8-TIM的筒形折迭结构,诱变前,酶分子内部形成了一个隧道形状的口袋与底物相互作用,纤维二糖结合到口袋深处;诱变后活性中心发生轻微偏移,纤维二糖不再深入结合到酶分子内部的隧道空腔,而是在表面形成的凹槽处发生作用,这种结构使得活性中心更大,对原活性中心存在的受力不均、底物堆积等情况可以有效解决,同时诱变后氨基酸与配体形成的氢键数量增加。诱变后BGL IV活性中心构象变化可能更有利于酶与底物的结合,对酶活的提高也有一定的促进作用。(本文来源于《安徽工程大学》期刊2018-06-12)

高产纤维素酶菌株论文开题报告

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

丝状真菌由于能够分泌较完整的木质纤维素降解酶系,并且产酶水平比较高,因此广泛应用于工业纤维素酶的生产。构建具有高产酶能力的丝状真菌菌株是降低木质纤维素降解酶生产成本、推动纤维素乙醇等行业发展的重要途径。丝状真菌中木质纤维素降解酶的合成主要受转录因子的组合调控。根据转录因子对木质纤维素降解酶基因的激活或抑制功能,一般将其分为两类:第一类为转录激活因子,主要包括CLR-1、CLR-2/ClrB、XLR-1/Xyr1/XlnR、ACEⅡ、ACEⅢ、AraR/ARA1等;第二类为转录抑制因子,主要包括CRE1/CreA、ACEI、BglR等。目前,在草酸青霉中已经鉴定到的木质纤维素降解酶基因调控转录因子有CreA、ClrB、XlnR和AmyR等。其中,XlnR是调控木聚糖酶基因表达最重要的转录激活因子,并且参与部分纤维素酶基因的表达调控。在多数木质纤维素降解丝状真菌中都可以发现转录激活因子XlnR同系物的存在,该蛋白结构和功能相对比较保守,并且在半纤维素降解和木糖代谢过程中发挥至关重要的作用。在本论文中,我们研究了草酸青霉转录调控因子XlnR的结构域组成特征,并探究了异源XlnR同系物在草酸青霉中的调控特性。对XlnR及其同系物的研究有助于加深对不同物种间XlnR同系物功能保守性的认识,同时也有利于为菌株的理性改造与木质纤维素降解酶高产菌株的构建提供有效靶点。本论文的主要研究结果如下:1.草酸青霉XlnR功能结构域的研究借助于酵母报告基因检测系统,通过构建不同区域的XlnR序列与酵母转录因子Gal4 DNA结合域的融合蛋白,对草酸青霉XlnR的激活结构域进行鉴定,确定了第351-694位氨基酸序列含有激活结构域。将草酸青霉XlnR靠近N端的一段特有的谷氨酰胺(Q)重复序列删除以后,XlnR对纤维素酶与半纤维素酶基因的调控能力增强,说明该段序列在一定程度上抑制了草酸青霉XlnR活性的发挥。发现位于XlnR C末端的序列对于草酸青霉XlnR活性发挥至关重要,其删除会使XlnR丧失调控活性,这与黑曲霉中XlnR C末端删除后的结果不同。通过对XlnR中可能参与解除葡萄糖抑制的氨基酸保守位点(第868-871位氨基酸)进行研究发现,XlnR中第871位氨基酸的极性与XlnR激活功能的发挥有直接关系,且第871位氨基酸的丢失会造成XlnR活性的丧失。当第871位的丙氨酸删除之后,XlnR激活能力丧失;突变为亲水性氨基酸之后,XlnR的激活能力降低;突变为疏水性氨基酸,XlnR激活能力变强,且该位点氨基酸疏水性越强,XlnR激活能力越强。此外,借助于酵母双杂交实验,我们确定了XlnR激活结构域与位于C端的氨基酸序列存在相互作用,说明两者之间可能在草酸青霉中通过改变相互作用的有无来实现XlnR活性的调节。2.异源XlnR同系物在草酸青霉中的功能研究将与草酸青霉XlnR亲缘关系较近的黑曲霉AXlnR、亲缘关系较远的里氏木霉Xyrl以及粗糙脉孢菌XLR-1,分别在草酸青霉xlnR缺失突变株中进行异源表达,发现这叁种异源XlnR同系物均能够激活草酸青霉木质纤维素降解酶系的表达。在包括草酸青霉本源XlnR在内的四种XlnR同系物中,里氏木霉Xyr1对草酸青霉纤维素酶基因调控能力最强,这可能与Xyr1在里氏木霉本源宿主菌中具有较强的纤维素酶基因调控能力有关。粗糙脉孢菌XLR-1对草酸青霉纤维素酶基因调控能力最弱。前人研究表明,XLR-1在粗糙脉孢菌中并不参与纤维素酶基因的调控,但在草酸青霉中,粗糙脉孢菌XLR-1却可以在一定程度上参与纤维素酶调控,提高xlnR缺失株的纤维素酶酶活。总的来说,XlnR同系物在异源宿主菌株中仍旧具有功能的保守性,可以参与到异源宿主菌的木质纤维素降解酶表达调控网络中,并发挥其调控功能。将XlnR同系物的保守氨基酸进行点突变,发现点突变后的Xyr-1A824V、XLR-1A828V、AXlnRA805V对草酸青霉木质纤维素降解酶基因的激活能力较突变前Xyr1、XLR-1、AXlnR分别更强。其中,Xyr1A824V在四种XlnR同系物突变体中的激活能力最强。同时,首次发现黑曲霉保守位点突变A805V也能够提高其对草酸青霉木质纤维素降解酶表达的激活效果。在草酸青霉中,该突变体与草酸青霉XlnRA871V激活效果接近。此前的研究结果证明,在本源宿主菌中突变后的XlnR同系物与突变前相比对木质纤维素降解酶基因具有持续激活能力及增强激活功能,本论文研究发现在异源宿主菌(草酸青霉)中这种持续激活的优势依旧存在。这些异源突变体功能的发现为草酸青霉菌株的遗传改造提供了更多的选择性。3.异源XlnR表达调控模块在草酸青霉中的功能研究以M12作为出发株,在草酸青霉菌株DB2中成功地建立了 Rec/six筛选标记重复利用系统,并且发现该系统对草酸青霉纤维素酶的产生没有影响。将含有里氏木霉转录激活因子Txyr1A824V及其靶标纤维素酶基因Tcbh1-Teg1的表达调控模块在草酸青霉中进行异源表达,发现纤维素酶基因Tcbh1和Teg1能够进行低水平的表达,且Xyr1A824V表达调控模块对草酸青霉纤维素酶酶活的提升效果优于单独Xyr1A824V的表达。由于外源的纤维素酶基因启动子在草酸青霉中不能高效地启动基因的表达,将其更换为草酸青霉本源的启动子,进而使外源纤维素酶基因实现了高效表达。纤维素酶基因启动子优化后的里氏木霉来源和粗糙脉孢菌来源表达调控模块均优于转录因子的单独过表达,显示将转录因子和其靶标基因共表达在菌株遗传改造中具有可行性。4.木质纤维素降解酶高产菌株的构建借助于Rec/six筛选标记重复利用系统,在菌株DB2的基础上累积过表达来自于草酸青霉、里氏木霉和粗糙脉孢菌的XlnR表达调控模块,使菌株的纤维素酶和半纤维素酶酶活均得到大幅提升。其中,构建的高产菌株RE-4-2相比于原始菌株M12滤纸酶活提高了5.1倍,木聚糖酶活提高了28倍。高产菌株RE-4-2所产酶系对预处理后的玉米秸秆的糖化效率也比出发菌株M12提高了 93%,纤维素转化率提高了 1.57倍。为进一步提高菌株对半纤维素的降解能力,在高产菌株RE-4-2的基础上过表达了点突变的AraRA731V,得到菌株RE-4-2-AraRA731V,其阿拉伯呋喃糖苷酶活比RE-4-2提高了 7.2倍,木糖苷酶活也提高了 1.2倍。通过对预处理后玉米秸秆的糖化实验,发现菌株RE-4-2-AraRA731V所产还原糖比菌株RE-4-2提高了13%。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

高产纤维素酶菌株论文参考文献

[1].葛青,章亭洲,王腾浩,赵艳.高产纤维素酶里氏木霉菌株诱变选育及其发酵条件优化[J].饲料博览.2019

[2].夏呈强.转录激活因子XlnR及其同系物在草酸青霉中的功能研究与纤维素酶系高产菌株的构建[D].山东大学.2019

[3].方桢.木聚糖酶高产菌株的选育及酶法制备药用微晶纤维素的初步研究[D].合肥工业大学.2019

[4].李豪,白光剑,兰楠,徐静,赵兴秀.高产纤维素酶菌株的筛选、鉴定及产酶特性研究[J].中国畜牧兽医.2019

[5].孟庆山.里氏木霉纤维素酶基因转录调控因子鉴定及纤维素酶高产菌株构建[D].大连理工大学.2019

[6].周新萍.高产纤维素酶菌株的筛选及产酶条件的研究[J].广东化工.2018

[7].程鹏,刘姗姗,王玉,卢存龙,刘爱民.1株高产纤维素酶菌株的筛选鉴定及对稻秆降解的研究[J].华南农业大学学报.2019

[8].郑贤金,汤斌.匍枝根霉纤维素酶高产菌株的诱变选育及发酵优化[J].安徽工程大学学报.2018

[9].黄晓梅,赵红晓,范金霞,陈秀玲.一株高产纤维素酶绿色木霉菌株诱变选育与发酵研究[J].东北农业大学学报.2018

[10].郑贤金.匍枝根霉纤维素酶高产菌株的选育及发酵控制[D].安徽工程大学.2018

标签:;  ;  ;  ;  

高产纤维素酶菌株论文-葛青,章亭洲,王腾浩,赵艳
下载Doc文档

猜你喜欢