杨震:掺杂型红光量子点的水相可控合成及其在LED中的应用论文

杨震:掺杂型红光量子点的水相可控合成及其在LED中的应用论文

本文主要研究内容

作者杨震(2019)在《掺杂型红光量子点的水相可控合成及其在LED中的应用》一文中研究指出:作为第四代绿色光源,白光LED因具有节能环保、使用寿命长等优点备受欢迎。商业中实现白光发射的方法是采用蓝色LED芯片激发YAG黄色荧光粉来实现白光的发射,但是通过这种方式产生的白光色温较高,显色指数较低,需要添加红光荧光粉进行调节。商用LED的这个缺陷为我们的研究提供了空间。量子点作为一种新型纳米材料,相对于传统的荧光粉,量子点尺寸更小,发射波长可调,光热稳定性较好,因此也成为大家关注的LED发光材料。本文采用水相法成功制备了三种掺杂型红光量子点:CdTe:Gd3+、ZnS:Mn2+、CuZnInS/ZnS,并且对这三种量子点的形貌和结构、光学性质等相关发光性能进行了研究,进一步将其与商用蓝光芯片组合制备了高性能白光LED。第一章,介绍了量子点材料的基本物理化学性质、合成方法以及LED的研究现状及发展前景,为论文研究提供了相关依据。第二章,对样品制备和表征过程以及所涉及的相关仪器和化学试剂进行了简单的介绍。第三章,通过水相加热法制备了一系列发光可调的CdTe:Gd3+量子点,并且对制备的样品进行了发光性能的研究。X射线衍射(XRD)结果显示Gd3+离子的掺入对CdTe的结构没有产生很大影响,均为闪锌矿结构,并且由于Gd3+的离子半径小于Cd的离子半径,引起晶格收缩,从而使CdTe的X射线衍射峰向大角度发生了移动,计算得到的颗粒大小为3 nm左右,与透射电镜(TEM)测试所得结果吻合。荧光发射光谱以及紫外可见吸收光谱表明,Gd3+离子的掺入使CdTe的发射峰发生了较大的红移,通过绝对量子产率的测试,发现了CdTe:Gd3+的量子产率比未掺杂的CdTe提高很多,达到了85%,通过沉淀离心干燥得到的量子点荧光粉,最大激发波长为460 nm,能够被近紫外LED芯片有效激发。另外,制作的白光LED器件的各项测试结果表明,CdTe:Gd3+量子点在LED应用中具有很好的应用前景。第四章,通过沉淀法制备了一系列的红光荧光粉ZnS:Mn2+。通过XRD、激发光谱以及发射光谱研究了ZnS:Mn2+的晶体结构以及发光性能。所得的量子点中,Mn2+在基质ZnS中的最适掺杂浓度为5 mol%,其激发峰为460 nm,与LED蓝光芯片发射波长相适应。透射电镜显示颗粒尺寸约为3.5 nm,与XRD计算数据相符,具有良好的单分散性。最后,将所制备红光量子点用于LED器件的制备。第五章介绍了水相加热法合成一系列发光可调的红光量子点CuZnInS/ZnS。在三元量子点CuInS的基础上,通过掺加不同比例的Zn离子,以达到增强荧光强度和调节发射波长的作用,并通过包覆ZnS外壳进一步增强其荧光强度和荧光稳定性。通过XRD、激发光谱、发射光谱、紫外可见吸收光谱以及TEM,研究了其晶体结构和发光性能。CuZnInS/ZnS量子点颗粒为球形,粒径约为3.5 nm,与XRD计算所得粒径一致。荧光光谱表明,通过Zn的掺杂以及ZnS外壳的包覆,极大地提高了量子点的荧光强度,当Cu/Zn摩尔比为1:1时,其荧光强度最高,荧光发射峰位于607 nm,其对应的最强激发峰为460 nm,与UV LED芯片的发射匹配良好。将上述量子点荧光粉用于白光LED器件的制备,很好的补充了商业LED中红光的缺失,显色指数较高,表明所制备的掺杂量子点具有一定的应用潜力。

Abstract

zuo wei di si dai lu se guang yuan ,bai guang LEDyin ju you jie neng huan bao 、shi yong shou ming chang deng you dian bei shou huan ying 。shang ye zhong shi xian bai guang fa she de fang fa shi cai yong lan se LEDxin pian ji fa YAGhuang se ying guang fen lai shi xian bai guang de fa she ,dan shi tong guo zhe chong fang shi chan sheng de bai guang se wen jiao gao ,xian se zhi shu jiao di ,xu yao tian jia gong guang ying guang fen jin hang diao jie 。shang yong LEDde zhe ge que xian wei wo men de yan jiu di gong le kong jian 。liang zi dian zuo wei yi chong xin xing na mi cai liao ,xiang dui yu chuan tong de ying guang fen ,liang zi dian che cun geng xiao ,fa she bo chang ke diao ,guang re wen ding xing jiao hao ,yin ci ye cheng wei da jia guan zhu de LEDfa guang cai liao 。ben wen cai yong shui xiang fa cheng gong zhi bei le san chong can za xing gong guang liang zi dian :CdTe:Gd3+、ZnS:Mn2+、CuZnInS/ZnS,bing ju dui zhe san chong liang zi dian de xing mao he jie gou 、guang xue xing zhi deng xiang guan fa guang xing neng jin hang le yan jiu ,jin yi bu jiang ji yu shang yong lan guang xin pian zu ge zhi bei le gao xing neng bai guang LED。di yi zhang ,jie shao le liang zi dian cai liao de ji ben wu li hua xue xing zhi 、ge cheng fang fa yi ji LEDde yan jiu xian zhuang ji fa zhan qian jing ,wei lun wen yan jiu di gong le xiang guan yi ju 。di er zhang ,dui yang pin zhi bei he biao zheng guo cheng yi ji suo she ji de xiang guan yi qi he hua xue shi ji jin hang le jian chan de jie shao 。di san zhang ,tong guo shui xiang jia re fa zhi bei le yi ji lie fa guang ke diao de CdTe:Gd3+liang zi dian ,bing ju dui zhi bei de yang pin jin hang le fa guang xing neng de yan jiu 。Xshe xian yan she (XRD)jie guo xian shi Gd3+li zi de can ru dui CdTede jie gou mei you chan sheng hen da ying xiang ,jun wei shan xin kuang jie gou ,bing ju you yu Gd3+de li zi ban jing xiao yu Cdde li zi ban jing ,yin qi jing ge shou su ,cong er shi CdTede Xshe xian yan she feng xiang da jiao du fa sheng le yi dong ,ji suan de dao de ke li da xiao wei 3 nmzuo you ,yu tou she dian jing (TEM)ce shi suo de jie guo wen ge 。ying guang fa she guang pu yi ji zi wai ke jian xi shou guang pu biao ming ,Gd3+li zi de can ru shi CdTede fa she feng fa sheng le jiao da de gong yi ,tong guo jue dui liang zi chan lv de ce shi ,fa xian le CdTe:Gd3+de liang zi chan lv bi wei can za de CdTedi gao hen duo ,da dao le 85%,tong guo chen dian li xin gan zao de dao de liang zi dian ying guang fen ,zui da ji fa bo chang wei 460 nm,neng gou bei jin zi wai LEDxin pian you xiao ji fa 。ling wai ,zhi zuo de bai guang LEDqi jian de ge xiang ce shi jie guo biao ming ,CdTe:Gd3+liang zi dian zai LEDying yong zhong ju you hen hao de ying yong qian jing 。di si zhang ,tong guo chen dian fa zhi bei le yi ji lie de gong guang ying guang fen ZnS:Mn2+。tong guo XRD、ji fa guang pu yi ji fa she guang pu yan jiu le ZnS:Mn2+de jing ti jie gou yi ji fa guang xing neng 。suo de de liang zi dian zhong ,Mn2+zai ji zhi ZnSzhong de zui kuo can za nong du wei 5 mol%,ji ji fa feng wei 460 nm,yu LEDlan guang xin pian fa she bo chang xiang kuo ying 。tou she dian jing xian shi ke li che cun yao wei 3.5 nm,yu XRDji suan shu ju xiang fu ,ju you liang hao de chan fen san xing 。zui hou ,jiang suo zhi bei gong guang liang zi dian yong yu LEDqi jian de zhi bei 。di wu zhang jie shao le shui xiang jia re fa ge cheng yi ji lie fa guang ke diao de gong guang liang zi dian CuZnInS/ZnS。zai san yuan liang zi dian CuInSde ji chu shang ,tong guo can jia bu tong bi li de Znli zi ,yi da dao zeng jiang ying guang jiang du he diao jie fa she bo chang de zuo yong ,bing tong guo bao fu ZnSwai ke jin yi bu zeng jiang ji ying guang jiang du he ying guang wen ding xing 。tong guo XRD、ji fa guang pu 、fa she guang pu 、zi wai ke jian xi shou guang pu yi ji TEM,yan jiu le ji jing ti jie gou he fa guang xing neng 。CuZnInS/ZnSliang zi dian ke li wei qiu xing ,li jing yao wei 3.5 nm,yu XRDji suan suo de li jing yi zhi 。ying guang guang pu biao ming ,tong guo Znde can za yi ji ZnSwai ke de bao fu ,ji da de di gao le liang zi dian de ying guang jiang du ,dang Cu/Znma er bi wei 1:1shi ,ji ying guang jiang du zui gao ,ying guang fa she feng wei yu 607 nm,ji dui ying de zui jiang ji fa feng wei 460 nm,yu UV LEDxin pian de fa she pi pei liang hao 。jiang shang shu liang zi dian ying guang fen yong yu bai guang LEDqi jian de zhi bei ,hen hao de bu chong le shang ye LEDzhong gong guang de que shi ,xian se zhi shu jiao gao ,biao ming suo zhi bei de can za liang zi dian ju you yi ding de ying yong qian li 。

论文参考文献

  • [1].锰掺杂全无机钙钛矿量子点及其在白光LED中的应用研究[D]. 方高亮.杭州电子科技大学2019
  • [2].碳量子点荧光调控机制研究及其作为光电转化材料的应用开发[D]. 申毅锋.西南科技大学2019
  • [3].基于壳层调控制备高质量ZnCdS蓝色发光量子点和发光二极管[D]. 王欧阳.河南大学2019
  • [4].ZnCdSe梯度合金量子点的壳层材料及其厚度对发光二极管性能的影响[D]. 汪盈.河南大学2019
  • [5].InGaAs/GaAs半导体量子点纳米材料光学性质研究[D]. 苑青.河北大学2019
  • [6].基于AFM诱导胶体量子点纳米结构沉积的研究[D]. 黎显继.贵州大学2019
  • [7].CsPbBr3/CdS钙钛矿核壳结构量子点的制备及其光电器件应用研究[D]. 李诗琪.重庆大学2018
  • [8].碳量子点的制备及其应用研究[D]. 徐伟力.辽宁大学2017
  • [9].贵金属纳米颗粒—量子点复合阵列结构制备及光学特性研究[D]. 王影.电子科技大学2018
  • [10].全无机钙钛矿量子点稳定性研究及高纯黄光发光二极管制备[D]. 何沅丹.南昌大学2018
  • 读者推荐
  • [1].复周期光子晶体对LED出光效率影响的研究[D]. 黄修康.江苏大学2019
  • [2].复合载荷下COB-LED封装的可靠性研究及寿命预估[D]. 普晶晶.江苏大学2019
  • [3].水下LED可见光OFDM系统峰均比抑制算法研究[D]. 徐凌燕.桂林电子科技大学2019
  • [4].分段式LED驱动电路的性能比较与优化[D]. 王玥.浙江工业大学2018
  • [5].白光LED用窄带红光荧光粉的制备与光谱性质的研究[D]. 谷茗.太原理工大学2019
  • [6].高荧光量子产率碳量子点的高产调控[D]. 谢艳亭.太原理工大学2019
  • [7].可变波长UV-LED固化单元的设计研究[D]. 董克凡.西安理工大学2019
  • [8].多波长LED光源雷达信号采集系统设计[D]. 张浩.西安理工大学2019
  • [9].锆、铍离子掺杂的纳米颗粒:形貌调控、上转换发光及光电性能研究[D]. 张媛媛.内蒙古大学2019
  • [10].基于白光LED的可见光通信网多用户资源管理算法研究[D]. 顾欣欣.江苏大学2019
  • 论文详细介绍

    论文作者分别是来自青岛科技大学的杨震,发表于刊物青岛科技大学2019-07-19论文,是一篇关于离子掺杂论文,量子点论文,荧光粉论文,水相合成论文,暖白光发光性能论文,青岛科技大学2019-07-19论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自青岛科技大学2019-07-19论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    杨震:掺杂型红光量子点的水相可控合成及其在LED中的应用论文
    下载Doc文档

    猜你喜欢